skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dames, Philip"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In social robotics, a pivotal focus is enabling robots to engage with humans in a more natural and seamless manner. The emergence of advanced large language models (LLMs) has driven significant advancements in integrating natural language understanding capabilities into social robots. This paper presents a system for speech-guided sequential planning in pick and place tasks, which are found across a range of application areas. The proposed system uses Large Language Model Meta AI (Llama3) to interpret voice commands by extracting essential details through parsing and decoding the commands into sequential actions. These actions are sent to DRL-VO, a learning-based control policy built on the Robot Operating System (ROS) that allows a robot to autonomously navigate through social spaces with static infrastructure and crowds of people. We demonstrate the effectiveness of the system in simulation experiment using Turtlebot 2 in ROS1 and Turtlebot 3 in ROS2. We conduct hardware trials using a Clearpath Robotics Jackal UGV, highlighting its potential for real-world deployment in scenarios requiring flexible and interactive robotic behaviors. 
    more » « less
    Free, publicly-accessible full text available March 25, 2026
  2. Utilizing heterogeneous mobile sensors to actively gather information improves adaptability and reliability in extended environments. This article presents a cooperative multirobot multitarget search and tracking framework aimed at enhancing the efficiency of the heterogeneous sensor network, and consequently, improving the overall target tracking accuracy. The concept of normalized unused sensing capacity is introduced to quantify the information a sensor is currently gathering relative to its theoretical maximum. This measurement can be computed using entirely local information and is applicable to various sensor models, distinguishing it from previous literature on the subject. It is then utilized to develop a heuristics distributed coverage control strategy for a heterogeneous sensor network, adaptively balancing the workload based on each sensor's current unused capacity. The algorithm is validated through a series of robot operating system (ROS) and MATLAB simulations, demonstrating superior results compared to standard approaches that do not account for heterogeneity or current usage rates. 
    more » « less
    Free, publicly-accessible full text available February 18, 2026
  3. We present Splat-Nav, a real-time robot navigation pipeline for Gaussian splatting (GSplat) scenes, a powerful new 3-D scene representation. Splat-Nav consists of two components: first, Splat-Plan, a safe planning module, and second, Splat-Loc, a robust vision-based pose estimation module. Splat-Plan builds a safe-by-construction polytope corridor through the map based on mathematically rigorous collision constraints and then constructs a Bézier curve trajectory through this corridor. Splat-Loc provides real-time recursive state estimates given only an RGB feed from an on-board camera, leveraging the point-cloud representation inherent in GSplat scenes. Working together, these modules give robots the ability to recursively replan smooth and safe trajectories to goal locations. Goals can be specified with position coordinates, or with language commands by using a semantic GSplat. We demonstrate improved safety compared to point cloud-based methods in extensive simulation experiments. In a total of 126 hardware flights, we demonstrate equivalent safety and speed compared to motion capture and visual odometry, but without a manual frame alignment required by those methods. We show online replanning at more than 2 Hz and pose estimation at about 25 Hz, an order of magnitude faster than neural radiance field-based navigation methods, thereby enabling real-time navigation. 
    more » « less
    Free, publicly-accessible full text available March 17, 2026
  4. This paper proposes a distributed estimation and control algorithm to allow a team of robots to search for and track an unknown number of targets. The number of targets in the area of interest varies over time as targets enter or leave, and there are many sources of sensing uncertainty, including false positive detections, false negative detections, and measurement noise. The robots use a novel distributed Multiple Hypothesis Tracker (MHT) to estimate both the number of targets and the states of each target. A key contribution is a new data association method that reallocates target tracks across the team. The distributed MHT is compared against another distributed multi-target tracker to test its utility for multi-robot, multi-target tracking. 
    more » « less
  5. This paper compares different distributed control approaches which enable a team of robots search for and track an unknown number of targets. The robots are equipped with sensors which have a limited field of view (FoV) and they are required to explore the environment. The team uses a distributed formulation of the Probability Hypothesis Density (PHD) filter to estimate the number and the position of the targets. The resulting target estimate is used to select the subsequent search locations for each robot. This paper compares Lloyd’s algorithm, a traditional method for distributed search, with two typical stochastic optimization methods: Particle Swarm Optimization (PSO) and Simulated Annealing (SA). This paper presents novel formulations of PSO and SA to solve the multi-target tracking problem, which more effectively trade off between exploration and exploitation. Simulations demonstrate that the use of these stochastic optimization techniques improves coverage of the search space and reduces the error in the target estimates compared to the baseline approach. 
    more » « less
  6. Accurately detecting, localizing, and tracking an unknown and time-varying number of dynamic targets using a team of mobile robots is a challenging problem that requires robots to reason about the uncertainties in their collected measurements. The problem is made more challenging when robots are uncertain about their own states, as this makes it difficult to both collectively localize targets and avoid collisions with one another. In this paper, we introduce the convex uncertain Voronoi (CUV) diagram, a generalization of the standard Voronoi diagram that accounts for the uncertain pose of each individual robot. We then use the CUV diagram to develop distributed multi-target tracking and coverage control algorithms that enable teams of mobile robots to account for bounded uncertainty in the location of each robot. Our algorithms are capable of safely driving mobile robots towards areas of high information distribution while maintaining coverage of the whole area of interest. We demonstrate the efficacy of these algorithms via a series of simulated and hardware tests, and compare the results to our previous work which assumes perfect localization. 
    more » « less
  7. Distributed multi-target tracking is a canonical task for multi-robot systems, encompassing applications from environmental monitoring to disaster response to surveillance. In many situations, the distribution of unknown objects in a search area is irregular, with objects are likely to distribute in clusters instead of evenly distributed. In this paper, we develop a novel distributed multi-robot multi-target tracking algorithm for effectively tracking clustered targets from noisy measurements. Our algorithm contains two major components. Firstly, both the instantaneous and cumulative target density are estimated, providing the best guess of current target states and long-term coarse distribution of clusters, respectively. Secondly, the power diagram is implemented in Lloyd’s algorithm to optimize task space assignment for each robot to trade-off between tracking detected targets in clusters and searching for potential targets outside clusters. We demonstrate the efficacy of our proposed method and show that our method outperforms of other candidates in tracking accuracy through a set of simulations. 
    more » « less
  8. This article proposes a novel learning-based control policy with strong generalizability to new environments that enables a mobile robot to navigate autonomously through spaces filled with both static obstacles and dense crowds of pedestrians. The policy uses a unique combination of input data to generate the desired steering angle and forward velocity: a short history of lidar data, kinematic data about nearby pedestrians, and a subgoal point. The policy is trained in a reinforcement learning setting using a reward function that contains a novel term based on velocity obstacles to guide the robot to actively avoid pedestrians and move toward the goal. Through a series of 3-D simulated experiments with up to 55 pedestrians, this control policy is able to achieve a better balance between collision avoidance and speed (i.e., higher success rate and faster average speed) than state-of-the-art model-based and learning-based policies, and it also generalizes better to different crowd sizes and unseen environments. An extensive series of hardware experiments demonstrate the ability of this policy to directly work in different real-world environments with different crowd sizes with zero retraining. Furthermore, a series of simulated and hardware experiments show that the control policy also works in highly constrained static environments on a different robot platform without any additional training. Lastly, several important lessons that can be applied to other robot learning systems are summarized. 
    more » « less
  9. Three occupancy grid map (OGM) datasets for the paper titled "Stochastic Occupancy Grid Map Prediction in Dynamic Scenes" by Zhanteng Xie and Philip Dames 1. OGM-Turtlebot2: collected by a simulated Turtlebot2 with a maximum speed of 0.8 m/s navigates around a lobby Gazebo environment with 34 moving pedestrians using random start points and goal points 2. OGM-Jackal: extracted from two sub-datasets of the socially compliant navigation dataset (SCAND), which was collected by the Jackal robot with a maximum speed of 2.0 m/s at the outdoor environment of the UT Austin 3. OGM-Spot: extracted from two sub-datasets of the socially compliant navigation dataset (SCAND), which was collected by the Spot robot with a maximum speed of 1.6 m/s at the Union Building of the UT Austin The relevant code is available at: OGM prediction: https://github.com/TempleRAIL/SOGMP OGM mapping with GPU: https://github.com/TempleRAIL/occupancy_grid_mapping_torch 
    more » « less